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Abstract. With the ever-increasing volume of services registered in various web
communities, service recommendation techniques, e.g., Collaborative Filtering
(i.e., CF) have provided a promising way to alleviate the heavy burden on the
service selection decisions of target users. However, traditional CF-based service
recommendation approaches often assume that the recommendation bases, i.e.,
historical service quality data are centralized, without considering the distributed
service recommendation scenarios as well as the resulted privacy leakage risks.
In view of this shortcoming, Locality-Sensitive Hashing (LSH) technique is
recruited in this paper to protect the private information of users when distributed
service recommendations are made. Furthermore, LSH is essentially a
probability-based search technique and hence may generate “False-positive” or
“False-negative” recommended results; therefore, we amplify LSH by AND/OR
operations to improve the recommendation accuracy. Finally, through a set of
experiments deployed on a real distributed service quality dataset, i.e., WS-
DREAM, we validate the feasibility of our proposed recommendation approach
named DistSRAmplify-LSH in terms of recommendation accuracy and efficiency
while guaranteeing privacy-preservation in the distributed environment.

Keywords: Distributed service recommendation � Collaborative Filtering
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1 Introduction

With the ever-increasing volume of services registered in various web communities
(e.g., Amazon and IBM), it is becoming a nontrivial task to find the web services that a
target user is really interested in from massive candidates [1–3]. In this situation,
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various recommendation techniques, e.g., Collaborative Filtering (i.e., CF) are
recruited to make service recommendation so as to reduce the heavy burden on the
service selection decisions of target users [4–7].

However, traditional CF-based service recommendation approaches (e.g.,
user-based CF, item-based CF and hybrid CF) often assume that the service recom-
mendation bases, i.e., historical service quality data are centralized, without consid-
ering the distributed service recommendation scenarios when historical service quality
data are from multiple independent platforms (e.g., historical service quality data
observed by user A and user B are recorded by Amazon and IBM, respectively).
Generally, two challenges are present in the above distributed service recommendation
problems. First, IBM is often not willing to share its data with Amazon due to privacy
concerns, vice versa, which hampers the data collaboration between Amazon and IBM
and consequently renders the distributed recommendation process infeasible. Second,
the volume of service quality data recorded by Amazon and IBM may become
increasingly huge with updates over time, which brings additional communication cost
between these two platforms; as a consequence, the recommendation efficiency is
reduced severely and cannot satisfy the quick response requirements from target users.

In view of these challenges, Locality-Sensitive Hashing (LSH) technique is
recruited in this paper to achieve privacy-preserving and efficient service recommen-
dation in the distributed environment. Furthermore, we amplify LSH so as to reduce the
“False-positive” and “False-negative” recommended results. Finally, according to the
amplified LSH, we proposal a novel distributed service recommendation approach, i.e.,
DistSRAmplify-LSH. With the inherent nature of amplified LSH, DistSRAmplify-LSH can
achieve a good recommendation performance in terms of recommendation accuracy
and efficiency while guaranteeing privacy-preservation.

In summary, the contributions of our paper are three-fold.

(1) We introduce LSH technique into distributed service recommendation, so as to
protect the private information of users and improve the recommendation efficiency.
Meanwhile, we recognize the possible “False-positive” and “False-negative”
recommended results produced by LSH-based recommendation approach.

(2) We amplify LSH by integrating the AND/OR operations, to reduce the
“False-positive” and “False-negative” recommended results and improve the
recommendation accuracy.

(3) Extensive experiments are conducted on a real distributed service quality dataset
WS-DREAM to validate the feasibility of our proposal. Experiment results show
that DistSRAmplify-LSH outperforms other state-of-the-art approaches in terms of
recommendation accuracy and efficiency while guaranteeing privacy-preservation.

The rest of paper is structured as follows. We motivate our paper in Sect. 2 and
formulate the distributed service recommendation problems in Sect. 3. In Sect. 4, LSH
technique is introduced briefly and afterwards, an amplified LSH-based recommen-
dation approach, i.e., DistSRAmplify-LSH is proposed to solve the privacy-preserving
distributed service recommendation problems. In Sect. 5, a set of experiments are
conducted to validate the feasibility of our proposal. Related work and comparison
analyses are presented in Sect. 6. And finally, in Sect. 7, we conclude the whole paper
and point out the future research directions.
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2 Motivation

An example is presented in Fig. 1 to demonstrate the motivation of our paper. In Fig. 1,
there are two platforms, i.e., Amazon and IBM which record the historical quality data
of services {ws1, …, wsn} observed by target user utarget and user u1, respectively. In
this situation, according to the traditional CF recommendation approaches [7], it is
necessary to calculate the similarity between utarget and u1 (denoted by sim(utarget, u1)).
However, as Fig. 1 shows, the calculation of sim(utarget, u1) requires the collaboration
between Amazon and IBM and often faces the following three challenges (see Fig. 1).

(1) Due to privacy concerns, IBM is often not willing to share its data with Amazon,
which hampers the cross-platform collaboration between Amazon and IBM and
consequently renders the calculation of sim(utarget, u1) infeasible.

(2) For both Amazon and IBM, their volume of recorded service quality data may
become increasingly huge with updates over time; in this situation, the collabo-
ration efficiency and scalability between Amazon and IBM may be decreased
significantly and cannot satisfy the quick response requirements of target users.

(3) It is possible to generate the “False-positive” or “False-negative” recommended
results; in this situation, user satisfaction is reduced significantly.

In view of these challenges, we amplify LSH and further propose an amplified
LSH-based service recommendation approach, i.e., DistSRAmplify-LSH, so as to achieve
privacy-preserving and efficient service recommendation in the distributed environment.

3 Problem Formulation

Generally, the distributed service recommendation problems involving multiple plat-
forms can be formulated as a five-tuple Dist_Ser_Rec(PF, U, utarget, WS, q), where

(1) PF = {pf1, …, pfz}: the set of platforms that record historical service quality data
observed by users; e.g., z = 2 holds in Fig. 1.

(2) U = {u1, …, um}: the set of users. For each user, his/her observed service quality
data are recorded by a platform in set PF.

(3) utarget: a target user to whom a recommender system intends to recommend ser-
vices. Here, utarget 2 U holds.

Fig. 1. Distributed service recommendation and its challenges: an example
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(4) WS = {ws1, …, wsn}: the set of candidate web services. For simplicity, we
assume that the services held by different platforms pf1, …, pfz are the same.
Specifically, if user u has never invoked web service ws, then the quality data of
ws observed by u is denoted by 0.

(5) q is a quality dimension of web services, e.g., response time. For simplicity, only
a quality dimension is considered in the following discussions.

With the above formulation, we can specify the privacy-preserving distributed
service recommendation problems more formally as below: according to the historical
quality data (over dimension q) of services (2 WS) observed by users (2 U) in multiple
platforms (2 PF), select an optimal service (2 WS, never invoked by utarget) and
recommend it to utarget, during which the private information of users (e.g., the service
quality data observed by a user, the service set invoked by a user) should not be
exposed to other users. To achieve this goal, a novel distributed service recommen-
dation approach DistSRAmplify-LSH is introduced in the next section.

4 A Privacy-Preserving Distributed Service Recommendation
Approach: DistSRAmplify-LSH

We firstly introduce the Locality-Sensitive Hashing technique briefly in Subsect. 4.1;
afterwards, in Subsect. 4.2, we introduce the details of our proposed amplified
LSH-based service recommendation approach DistSRAmplify-LSH.

4.1 Locality-Sensitive Hashing

The main idea behind LSH [8] is: select a specific hash function (or a hash function
family) so that (1) for two neighboring points in original data space, they are still
neighbors after hash with large probability (2) for two non-neighboring points in
original data space, they are still non-neighbors after hash with large probability. More
formally, a hash function h(.) is called a LSH function iff conditions (1) and (2) hold,
where x and y are two points in original data space, d (x, y) denotes the distance
between points x and y, h(x) is the hash value of point x, P(A) represents the probability
that event A holds, {d1, d2, p1, p2} are a set of thresholds.

If d x; yð Þ� d1; thenP h xð Þ ¼ h yð Þð Þ� p1 ð1Þ

If d x; yð Þ� d2; thenP h xð Þ ¼ h yð Þð Þ� p2 ð2Þ

The rationale of LSH-based neighbor search can be explained intuitively in Fig. 2,
where h(.) is a LSH function and {A, B, C, D} are four points in original data space. As
points A and B are neighbors, they are projected into the same bucket of the LSH table,
i.e., h(A) = h(B) with large probability; while points C and D are non-neighbors,
therefore, they are projected into different buckets, i.e., h(C) 6¼ h(D) with large prob-
ability. Conversely, if h(A) = h(B) holds, then points A and B are neighbors in original
data space with large probability; if h(C) 6¼ h(D) holds, then points C and D are
non-neighbors in original data space with large probability.
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Assume X is a new point and we hope to find its similar neighbors in a
privacy-preserving way (i.e., without revealing the inner details of point X), then we
can first calculate point X’s hash value, i.e., h(X). Next, if h(X) = h(A) = h(B) holds,
then points A and B are point X’s neighbors; while if h(X) = h(C) holds, then point C is
the only neighbor of point X. This is the main rationale of LSH-based neighbor search.
As the LSH table can be built offline, the neighbor search efficiency can be improved
significantly. Besides, for a point (e.g., point A in Fig. 2), only its hash value with little
privacy is used in LSH-based neighbor search; as a consequence, the private infor-
mation of this point can be protected.

4.2 DistSRAmplify-LSH: Amplified LSH-Based Service Recommendation
Approach

The amplified LSH-based service recommendation approach, i.e., DistSRAmplify-LSH is
essentially a variant of user-based CF approach, which mainly consists of the four steps
in Fig. 3.

Fig. 2. Rationale of LSH-based neighbor search

Fig. 3. Four steps of amplified LSH-based service recommendation approach DistSRAmplify-LSH
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Step 1: Build User Indexes Offline Based on LSH
In this step, we choose a LSH function h(.) to build indexes for all the m users in
distributed platforms. The selection of LSH function h(.) depends on the adopted
“distance” type of d (x, y) (see conditions (1)–(2) in Subsect. 4.1). As Pearson Cor-
relation Coefficient (PCC) [9] is often taken as the similarity measurement or distance
type in service recommendation, we adopt the LSH function h(.) corresponding to PCC
distance for user indexes building.

Concretely, for a user u, we can model her/his historical quality data over n ser-
vices, i.e., ws1, …, wsn with an n-dimensional vector u!¼ ws1:q; . . .;wsn:qð Þ, where
q is a quality dimension of services and wsj.q denotes service wsj’s quality over
dimension q observed by user u. Specifically, wsj.q = 0 if user u has never invoked
web service wsj before. Then for vector u!, its LSH function hð~uÞ can be represented by
(3) [10]. Here, v! is an n-dimensional vector (v1, …, vn) where vj (1 � j � n) is a
random value in range [−1, 1]; symbol “�” denotes the dot product between two
vectors. To ease the understanding of readers, we explain the physical meaning of (3)
as follows: take vector v! as a hyper plane for space partition; if two vectors ua

! and
ub
!ð1 � a; b�m and a 6¼ bÞ are located on the same side of v!(i.e., both ua

!� v![ 0
and ub

!� v![ 0 hold, or, both ua
!� v!� 0 and ub

!� v!� 0 hold), then ua
! and ub

! can be
regarded as similar (with high probability).

hð u!Þ ¼ 1 if u!� v![ 0
0 if u!� v!� 0

�
ð3Þ

Thus through the LSH function h(.) in (3), each user uðu 2 UÞ is converted to a
binary value hð~uÞ 2 f0; 1gð Þ However, a single LSH function often falls short in
profiling the service quality data observed by a user. Therefore, we choose r LSH
functions h1(.), …, hr(.) to generate an r-dimensional vector Hð~uÞ ¼ ðh1ð~uÞ; . . .; hrð~uÞÞ
offline for user u. Then Hð~uÞ can be regarded as the index for user u.

Step 2: Defining “Neighbor” Relationship Between Users Based on Amplified
LSH
According to the LSH theory, two users ua and ub are similar neighbors iff they fall into
the same bucket, i.e., Hðua!Þ ¼ Hðub!Þ, vice versa. However, as formulas (1) and (2)
indicate (see Subsect. 4.1), LSH is essentially a probability-based search technique;
therefore, it is inevitable to produce unsatisfactory search results. In other words, LSH
may generate “False-positive” (i.e., dissimilar users of the target user are regarded as
similar) or “False-negative” (i.e., similar neighbors of the target user are regarded as
dissimilar) neighbor search results, which reduces the service recommendation accu-
racy severely.

To overcome this shortcoming, we amplify LSH by adopting the AND/OR oper-
ations over multiple LSH functions or LSH tables. Concretely, the following two
strategies are taken to amplify LSH.

Strategy-1: OR operation over r LSH functions so as to reduce the “False-negative”
search results.
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In Step 1, r LSH functions h1(.), …, hr(.) are recruited to build index for user u, i.e.,
Hð~uÞ ¼ ðh1ð~uÞ; . . .; hrð~uÞÞ. Here, in order to reduce the “False-negative” search results,
OR operation is taken over these r LSH functions. More concretely, two users ua and ub
are regarded as similar iff the condition in (4) holds. Here, we utilize equation

Hðua!Þ ¼ORHðub!Þ to represent the “similarity” relationship defined in condition (4).

9 j; satisfy hjðua!Þ ¼ hjðub!Þ 1� j� rð Þ ð4Þ

Strategy-2: AND operation over T LSH tables so as to reduce the “False-positive”
search results.

In order to reduce the “False-positive” search results, we repeat Step 1 T times to
generate T hash tables. Next, AND operation is taken over these T LSH tables. More
concretely, two users ua and ub are regarded as similar neighbors iff the condition in (5)
holds. Here, Hx(.) denotes the LSH function family (see Strategy-1) recruited in x-th

LSH table; we utilize ua $sim ub to represent the “similarity” relationship defined in
condition (5).

8x 2 1; . . .; Tf g; satisfyHxðua!Þ ¼ORHxðub!Þ ð5Þ

Thus through Strategy-1 and Strategy-2, we amplify LSH and define a novel

“neighbor” relationship between two users ua and ub, i.e., ua $sim ub, so as to reduce the
“False-negative” and “False-positive” search results and improve the recommendation
accuracy.

Step 3: Online Neighbor Finding for utarget
The index for utarget, i.e., Hðutarget���!Þ can be calculated based on the LSH function family

{h1(.), …, hr(.)} chosen in Step 1. Afterwards, if utarget $sim ua holds according to (4)
and (5), then ua can be regarded as a similar neighbor of utarget and is put into set
NB_Set, where NB_Set denotes the neighbor set of utarget.

Step 4: Service Recommendation
If NB Set ¼ ;, then no similar neighbors of utarget are returned and the subsequent
service recommendation fails accordingly. Otherwise, we utilize the similar neighbors
in NB_Set to make a service recommendation to utarget. Concretely, for each service ws
(2 WS) never invoked by utarget, we can predict its quality over dimension q observed
by utarget, denoted by ws.qtarget, based on the equation in (6). Here, ws.qa denotes ws’
quality over dimension q observed by user ua; NB_Set

# represents the set of utarget’s
neighbors who have invoked service ws before, i.e., NB_Set# = { ua | ua 2 NB_Set, ws.
qa 6¼ 0}. Finally, we select a service with the optimal quality predicted by (6) and
recommend it to utarget.

ws:qtarget ¼ 1
jNB Set#j �

X
ua2NB Set#

ws: qa ð6Þ
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Thus through the above four steps of DistSRAmplify-LSH, we can recommend the
quality-optimal service to the target user, so as to finish the privacy-preserving dis-
tributed service recommendation process. More formally, our proposal can be specified
by the following pseudo code.

Algorithm: DistSRAmplify-LSH (PF, U, WS, utarget, q)

Inputs: (1) PF = {pf1, …, pfz}: platform set; 
(2) U = {u1, …, um}: user set; 
(3) WS = {ws1, …, wsn}: web service set; 
(4) usertarget : a target user; 
(5) q: a quality dimension of web services. 

Output: wsoptimal: a candidate service with optimal predicted quality

/*  Step 1: Build user indexes offline based on LSH */ 
1  for j = 1 to r do // r LSH functions in each LSH table
2 for k = 1 to n do // n-dimensional vector depicting a user
3 vjk = random [-1, 1] 
4 end for
5 for a = 1 to m do  // m users 
6 calculate hj( au

uur
)based on (3)

7 end for
8 end for
9  for a = 1 to m do
10 H( au

uur
) = (h1( au

uur
), …, hr( au

uur
))

11 end for 
12 repeat line 1-11 T times to generate T LSH tables offline
/*  Step 2 - Step 3: Define “neighbor” relationship between users based on amplified LSH 

and online neighbor finding for utarget  */ 
13  count = 0 // number of LSH tables in which the condition in (4) holds
14  for a = 1 to m do
15 for x = 1 to T do  // T LSH tables
16 if Hx( au

uur
) =

OR
Hx( targetu

uuuuur
) holds based on (4)

17 then count + +
18 continue
19 else break
20 end if
21 end for
22 if count = T
23 then put ua into NB_Set
24 end if
25  end for

/*  Step 4: Service recommendation  */ 
26  for i = 1 to n do   // n candidate web services
27 if wsi.qtarget = 0  // utarget has never invoked wsi before 
28 then COUNT = 0  // size of set NB_Set# in (6)
29 for K = 1 to | NB_Set | do
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30 if wsi.qK ≠0
31 then COUNT + +
32 wsi.qtarget = wsi.qtarget + wsi.qK

33 end if
34 end for
35 wsi.qtarget = wsi.qtarget / COUNT
36 end if
37  end for
38  wsoptimal = {wsi | wsi.qtarget = OPTIMAL{wsi.qtarget}}
39  return wsoptimal to utarget

5 Experiments

5.1 Experiment Dataset and Deployment

In this section, a set of experiments are conducted to validate the feasibility of our
proposed service recommendation approach DistSRAmplify-LSH. The experiments are
based on a real distributed service quality dataset WS-DREAM [11] which collects the
historical quality data of 5825 web services (from different countries) observed by 339
users. In our experiments, each country that hosts a set of web services is regarded as a
distributed platform, so as to simulate the distributed service recommendation scenario.
Besides, only a quality dimension of services, i.e., response time is considered; fur-
thermore, some entries in the user-service quality matrix are removed randomly to
simulate the missing quality data.

To demonstrate the feasibility and advantages of our proposed DistSRAmplify-LSH

approach, we compare our proposal with three state-of-the-art approaches: UPCC [12],
P-UIPCC [13] and PPICF [14]. Concretely, the following two evaluation measures are
examined and compared, respectively (as user privacy can be protected well by the
intrinsic nature of LSH technique, we will not evaluate the capability of privacy-
preservation of our proposal here).

(1) time cost: consumed time for generating the final recommended results, through
which we can test the recommendation efficiency.

(2) MAE (Mean Absolute Error): average difference between predicted quality and
real quality of recommended services, through which we can test the recom-
mendation accuracy (the smaller the better).

The experiments are conducted on a Lenovo computer with 2.40 GHz processors and
12.0 GB RAM. The machine runs under Windows 10, JAVA 8 and MySQL 5.7. Each
experiment is carried out 10 times and the average experiment results are reported finally.

5.2 Experiment Results and Analyses

Concretely, the following five profiles are tested and compared in our experiments.
Here, m and n denote the number of users and number of web services, respectively;
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T and r denote the number of LSH tables and number of hash functions in each LSH
table, respectively.

Profile 1: Recommendation Accuracy Comparison
In this profile, we test the recommendation accuracy (i.e., MAE, the smaller the better)
of four approaches. The experiment parameters are set as follows: m is varied from 100
to 300, n is varied from 1000 to 5000, and T = r = 10 holds. The experiment results are
shown in Fig. 4.

In Fig. 4(a), n = 5000 holds. The experiment results show that the recommendation
accuracy values of P-UIPCC and PPICF approaches are often low (i.e., MAE values
are high). This is because several approximation strategies (e.g., data obfuscation,
divide-merge) are adopted in these two approaches so as to protect the user privacy,
while the approximation strategies reduce the recommendation accuracy significantly.
No data approximation strategy is recruited in UPCC approach; therefore, the rec-
ommendation accuracy of UPCC is higher than P-UIPCC and PPICF approaches.
While our proposed DistSRAmplify-LSH approach outperforms the other three ones in

(b) m = 300

(a) n = 5000

Fig. 4. Recommendation accuracy comparison of four approaches
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terms of recommendation accuracy, which is due to the following two reasons. First,
according to the inherent nature of LSH, only the “most similar” neighbors of a target
user can be returned for subsequent service recommendation in our DistSRAmplify-LSH

approach; as a consequence, high recommendation accuracy is often guaranteed.
Second, the AND/OR operations are adopted in our approach to amplify LSH, through
which the “False-positive” and “False-negative” search results are reduced; accord-
ingly, the recommendation accuracy is improved.

Similar experiment results can be observed from Fig. 4(b) where m = 300 holds
and n is varied from 1000 to 5000. The reasons are the same as those in Fig. 4(a) and
are not repeated here.

Profile 2: Recommendation Efficiency Comparison
In this profile, we test the recommendation efficiency of four approaches. The recruited
experiment parameters are set as below: m is varied from 100 to 300, n is varied from
1000 to 5000, T = r = 10 holds. The concrete experiment results are shown in Fig. 5.

(a) n = 5000 

(b) m = 300

Fig. 5. Recommendation efficiency comparison of four approaches
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In Fig. 5(a), n = 5000 holds. The experiment results indicate that the time costs of
P-UIPCC and PPICF approaches both increase with the growth of m and are often high
because of the recruited additional privacy-preservation operations (e.g., data obfus-
cation, divide-merge). Similar experiment result can be observed from the UPCC
approach in Fig. 5; however, UPCC performs better than P-UIPCC and PPICF in
recommendation efficiency as no additional privacy-preservation operations are adop-
ted. While our DistSRAmplify-LSH approach outperforms the other three approaches in
terms of recommendation efficiency, because the recruited LSH tables can be built
offline and the rest step of online neighbor finding is very efficient (in the best cases, the
time complexity of online neighbor finding is O(1) [15]). Similar experiment results can
be observed from Fig. 5(b), which are not analyzed repeatedly.

Profile 3: Recommendation Accuracy of DistSRAmplify-LSH with Respect to T and r
The number of LSH tables (i.e., T) and the number of LSH functions in each LSH table
(i.e., r) are two key parameters in our proposal. Therefore, in this profile, we test the

(a) MAE w.r.t. T

(b) MAE w.r.t. r

Fig. 6. Recommendation accuracy of DistSRAmplify-LSH w.r.t. T and r
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recommendation accuracy ofDistSRAmplify-LSHwith respect to T and r. The parameters are
set as follows: m = 200, n = 3000. The concrete experiment results are shown in Fig. 6.

In Fig. 6(a), T = {5, 6, 7, 8, 9}, r = {2, 4, 6, 8, 10}. For each T value, we test the
MAE values corresponding to different r values, and finally the average MAE value is
adopted. The experiment results indicate that the recommendation accuracy increases
(i.e., MAE decreases) slightly when T grows. This is because in Strategy-2, the AND
operation is taken over the generated T LSH tables; therefore, more LSH tables often
mean a stricter search condition for neighbors as well as higher service recommen-
dation accuracy.

In Fig. 6(b), T = {2, 4, 6, 8, 10}, r = {5, 6, 7, 8, 9}. For each r value, we test the
MAE values corresponding to different T values, and finally the average MAE value is
adopted. The experiment results show that the recommendation accuracy decreases
(i.e., MAE increases) with the growth of r approximately. This is because in Strategy-1,
the OR operation is taken over the chosen r LSH functions; as a consequence, more
LSH functions often mean looser search condition for neighbors as well as lower
recommendation accuracy.

Profile 4: Recommendation Efficiency of DistSRAmplify-LSH with Respect to T and r
In this profile, we test the efficiency of DistSRAmplify-LSH with respect to T and r. Here,
m = 200, n = 3000, T is varied from 1 to 5, r is varied from 1 to 5. The experiment
results are shown in Fig. 7. As Fig. 7(a) shows, the time cost of our proposal increases
approximately with the growth of T because of the AND operation (over T LSH tables)
adopted in Strategy-2. While as can be seen from Fig. 7(b), the time cost of our
proposal does not exhibit a very regular variation tendency when r grows. Typically,
the average time cost (i.e., the blue column) stays approximately the same with the
growth of r because of the OR operation (over r LSH functions) adopted in Strategy-1.

Profile 5: Recommendation Failure Rate of DistSRAmplify-LSH with Respect to T
The number of LSH tables, i.e., T plays an important role in the successful service
recommendation because of the adopted AND operation in Strategy-2. Generally, for a
target user, more LSH tables mean a stricter search condition for similar neighbors.
Therefore, if T is large enough, the search condition may become too strict to find a
qualified neighbor of the target user; in this situation, service recommendation is failed.
In this profile, we test the failure rate of DistSRAmplify-LSH with respect to T. The
parameters are set as follows: m = 200, n = 3000, r = 1, T is varied from 5 to 15.
Concrete experiment results are presented in Fig. 8.

As Fig. 8 shows, the failure rate of our DistSRAmplify-LSH approach increases with
the growth of T approximately; this is because more LSH tables (i.e., a larger T value)
often mean a stricter search condition for similar neighbors and hence may lead to a
recommendation failure. While when T is small (e.g., when T = 5 or T = 6), the failure
rate of DistSRAmplify-LSH drops to a small value even 0. Therefore, through tuning the
parameter value of T, a low recommendation failure rate can be guaranteed.
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(a) Time cost w.r.t. T

(b) Time cost w.r.t. r

Fig. 7. Recommendation efficiency of DistSRAmplify-LSH w.r.t. T and r (Color figure online)

Fig. 8. Recommendation failure rate of DistSRAmplify-LSH w.r.t. T

Amplified LSH for Privacy-Preserving Distributed Service Recommendation 293



6 Related Work and Comparison Analyses

In this section, we compare our proposal with existing CF-based recommendation
approaches. Generally, CF-based service recommendation approaches can be divided
into two categories: model-based CF and memory-based CF.

6.1 Model-Based CF

Model-based CF approaches recruit the historical service quality data observed by
users to build a user-service recommendation model offline, and then make online
recommendation based on the obtained model. Several model-based CF approaches are
introduced for service recommendation, e.g., Matrix Factorization [16], Latent
Dirichlet Allocation [17] and clustering [18]. Generally, the recommendation efficiency
of these model-based CF approaches is high as the recommendation model can be
trained offline. However, these approaches have two shortcomings. First, they seldom
consider the privacy leakage risks in service recommendation process. Second, they
often assume that the historical service quality data used for service recommendation
are centralized, without considering the distributed service recommendation scenarios
where historical service quality data are from multiple independent platforms; there-
fore, these approaches fall short in handling the distributed service recommendation
problems.

6.2 Memory-Based CF

Memory-based CF recommendation approaches first employ the historical service
quality data to find similar users or similar services, and then utilize them to make
service recommendations. User-based CF and item-based CF are employed for service
recommendation in [19] and [20], respectively. In order to combine the advantages of
user-based CF and item-based CF, a hybrid service recommendation approach named
WSRec is proposed in [21]. Experiment results show that the recommendation per-
formance is improved. As the running quality of a web service often depends on the
service invocation context (e.g., service invocation time, service location, user loca-
tion), time-aware recommendation and location-aware recommendation are put forward
by [22] and [23], respectively. Besides, user preferences also play an important role in
the service selection decisions of a target user; in view of this observation,
preference-aware CF recommendation approach is introduced in [24], where the users
with similar preferences are recruited to make service recommendations.

However, the above approaches do not consider the privacy leakage risks in service
recommendation process. In view of this shortcoming, in [25], users are suggested to
release only a small portion of their observed service quality data to the public so that
the remaining majority of data are still secure. However, the released small portion of
data can still reveal part of a user’s private information. In order to protect the private
information of users better, data obfuscation strategy is adopted in [13] to hide the real
service quality data. However, as the service quality data used to make service rec-
ommendations have been obfuscated, the recommendation accuracy is reduced
accordingly. In view of this drawback, a “divide-merge” strategy is put forward in [14]
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where each piece of service quality data is divided into several segments with little
private information, and then the segments are recruited for user similarity calculation
and service recommendations. However, two shortcomings are present in [14]. First,
the recommendation efficiency is decreased severely as the adopted “divide-merge”
operations bring additional time cost. Besides, some private information of users
cannot be protected well, e.g., the service intersection commonly invoked by two users.

In view of the shortcomings of existing research work, a novel amplified
LSH-based recommendation approach named DistSRAmplify-LSH is proposed in this
paper, to solve the privacy-preserving distributed service recommendation problems in
the distributed environment. Through the extensive experiments conducted on a real
distributed service quality dataset WS-DREAM, we validate the feasibility and
advantages of our proposal in terms of recommendation accuracy and efficiency while
guaranteeing privacy-preservation.

7 Conclusions

In this paper, we put forward a novel privacy-preserving service recommendation
approach based on amplified Locality-SensitiveHashing, i.e.,DistSRAmplify-LSH, to handle
the distributed service recommendation problems. Through Locality-Sensitive Hashing,
user indexes can be built offline; as a consequence, the neighbor search efficiency and
service recommendation efficiency are improved significantly. Besides, due to the
inherent nature of LSH, user privacy can be protected during the distributed service
recommendation process. Moreover, we amplify LSH by integrating the AND/OR
operations over multiple LSH tables or LSH functions, through which the
“False-positive” and “False-negative” recommended results are reduced; as a result, the
service recommendation accuracy is improved significantly. Finally, through a set of
experiments deployed on the distributed service quality datasetWS-DREAM, we validate
the feasibility of our proposed DistSRAmplify-LSH approach. Experiment results demon-
strate that our proposal can achieve a good recommendation performance in terms of
recommendation accuracy and efficiency while guaranteeing privacy-preservation.

In the future, we will further investigate the distributed service recommendation
problems with multiple quality dimensions. Besides, the running qualities of web
services are often not static, but dynamic; therefore, we will study the dynamic
quality-aware distributed service recommendation problems in the future.
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