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Mobile Application  Security 

Mobile Platform Security

Cloud Computing Security

Project 1: Fortifying 

mobile platforms with a 

user-centric trust 

anchor

Project 4: Privacy-preserving access control & 

computations of encrypted data in the cloud

Project 3: Analyzing, detecting, containing 

mobile malware   

Project 2: Secure & 

usable authentication 

systems  in mobile 

computing

Projects at Secure Mobile Centre @ SMU
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Access Control of Encrypted 

Data in the Cloud
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Assumption and Objective

• Assumption

5

Users
Honest but curious 
- Not trusted to keep data 

Confidential

- Not trusted to enforce access control correctly

Cloud

• Objective
– End-to-end data security and privacy 

– Scalable, efficient and flexible solution

• Approach
– Attribute-based encryption (ABE) [Sahai & Waters’05]
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System Architecture Based on CP-ABE
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KGC

One-to-many public key encryption

Access control built in mathExpressive access control policy
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Our Contributions

• Verifiable outsourced decryption of ABE [TIFS 2013, TIFS 2015]

• Efficient user and attribute revocation [EOSRICS’15 & ‘16, 

SecureComm’17]

• CP-ABE with partial hidden access policy [AsiaCCS’12, ProvSec’16]

• Deduplication on encrypted data [TBD 2016], Best Paper Award

• Attribute-based secure messaging system in the cloud [SG-CRC’17]

• Lightweight sharable and traceable secure mobile health system 
[TDSC, accepted]
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User Revocation

• User leaves the system, or user’s private key is 

compromised 

• User revocation in ABE is critical because of its one-to-

many encryption nature

• However, efficient user revocation has been a very 

challenging problem in ABE 

12/26/20178
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Existing Solutions

[Boneh & Franklin CRYPTO’01] Basic approach
• Associate encrypted message with a time stamp: CT(t)

• KGC periodically updates users keys over private 

channels

9

KGC
Each user

keeps

1 Secret Key
O(N-r) key updates over 

secure channels
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Existing Solutions

[Boldyreva, Goyal, Kumar CCS'08] [Seo & Emura PKC’13] 

Tree-based approach

• Associate encrypted message with a time stamp: CT(t)

• KGC periodically broadcasts key updates to users over public 

channels

• Non-revoked user computes decryption key for current time t using 

her/his long-term secret keys and key updates

10

KGC Each user

Keeps 

O(log N)

Secret 

Keys

O(r log N/r) key updates

over public channel 
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Existing Solutions

• [Attrapadung, Imai Pairing’09]: Direct ABE 

revocation 

– Data owners directly specify revocation list when 

encrypting

• Extension

− [Yang, Ding, Lu, Wan, Zhou ISC’13] A semi-trusted 

server shares the decryption ability with data users, 

and terminates decryption for revoked users

− [Attrapadung, Imai ICCC’09] A hybrid revocable ABE 

system allows data owner to select either direct or 

indirect revocation when encrypting a message

11



SMU Classification: Restricted

Limitations of Existing Solutions

• Direct revocation 

– Requires all data owners to keep a current revocation list. This 

makes the system impurely attribute-based, since data owners in 

ABE create a ciphertext based solely on attributes without caring 

each data user’s status 

• Tree-based revocation solutions, such as [BGK08], 

require

– All non-revoked users to periodically update decryption keys 

themselves to decrypt newly encrypted data

– Every user keeps O(logN) long-term private keys

• Is it possible to overcome the above limitations in tree-

based revocations solutions?
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Our ABE Scheme with Server-Aided Revocation
[ESORICS’16]

• All user revocation related operations are delegated to a public server 

which keeps users’ public keys

• KGC  periodically sends O(r log N/r) key updates to public server which 

forms transformation keys for current time period for non-revoked users 

only

• Public server uses a user’s transformation key to transform a ciphertext

• User uses his/her secret key to finally decrypt on transformed ciphertext

13

KGC
Each user

keeps 1

secret Key

Public server

User public keys

Key updates

t
t

t

Transforms ciphertexts

for non-revoked users only
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Security Properties 

• Revoked user cannot decrypt ciphertexts

generated under the current and future time 

periods

• Public server cannot obtain the message 

encrypted in a ciphertext

• Except the KGC, all other parties may collude

• No secure channels are required between the 

KGC, users and the public server

14
12/26/2017
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





Basic Idea

• User u1’s public key: PK1 = 

(X(u1,A1)0,X(u1,A1)1,X(u1,A1)3,X(u1,A1)7)

• User u3’s public key: PK3 = 

(X(u3,A3)0,X(u3,A3)1,X(u3,A3)4,X(u3,A3)9)

• If no user is revoked at time t:

Key update KUt = {Y(t)0} and

transformation key for user ui at time t:

TK(ui,t)  = Z(X(ui,Ai)0, Y(t)0) 

• If user u3 is revoked at time t: 

KUt = {Y(t)3, Y(t)10, Y(t)2} and

transformation key for user u1 at time t:       

TK(u1,t)  = Z(X(u1,A1)3, Y(t)3) 

12/26/201715

X: function for user public key

Y: function for key update

Z: function for transformation key

X and Y have different parts of 

KGC’s master key as input
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Comparison of Revocable ABE

16

[BGK08] [AI09] [YDLWZ13] [SSW12] Ours

Revocation

Mode
Indirect Indirect & 

Direct

Direct Indirect Indirect

Server − − Semi-trust − Public

Key Exposure 

Resistance
No No - No Yes

Security Selective Selective Selective Selective Selective

Secure Channel Yes Yes Yes Yes No

Size of Key 

Updates
O(R log(N/R)) O(R log(N/R)) _ O(R log(N/R)) O(R log(N/R))

No. of Key 

Stored 

by User

O(𝑙 logN) O(𝑙 logN) O(1) O(𝑙 logN) &

O(k logN)

O(1)

N: the number of all data users; R: the number of revoked data users; 𝑙: the

number of attributes presented in an access structure; k: the size of the

attribute set associated with an attribute-key

12/26/2017
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Our IBE/ABE with Server-Aided Revocation

• [ESORICS’15] IBE with server-aided user 

revocation

• [ESPRICS’16] ABE with server-aided user 

revocation

• [SecureComm’16] ABE with server-aided 

granular revocation

– Both user and attribute revocation

17



Privacy-Preserving Outsourced 

Computations in the Cloud
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Homomorphic Encryption
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Somewhat

Fully

[x], [y]  [x+y]

[x],  [y]  [x*y]

[x], [y]  [x+y]    

and [x*y]

Unlimited times

Unlimited times

Limited times

Unlimited times
[x], [y]  [x+y]    

and [x*y]
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Homomorphic Encryption

Fully Homomorphic encryption can achieve secure

arbitrary computation, but up to now, it’s still too

costly in computation and storage

Our approach: semi-homomorphic encryption +

system architecture
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Our Contributions

• Privacy-preserving outsourced calculation of integers and 

rational numbers [TDSC, accepted]

• Privacy-preserving outsourced calculation of floating point 

numbers [TIFS, 2016]

• Privacy-preserving outsourced calculation toolkits with 

multiple keys [TIFS, 2016]

• Encrypted data processing with homomorphic re-encryption 
[Information Sciences 2017]

• Privacy-preserving data processing with flexible access 

control [TDSC, accepted]

• Privacy-preserving outsourced clinical decision support 

system in the cloud [TSC, accepted]
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Paillier Encryption

Notation: Let x  𝑍𝑁, and 𝑥 denotes the encryption of x

Scalar-product homomorphic: given 𝑥 , 𝑏 ∈ 𝑍𝑁, 

we have

𝑥 𝑏 mod 𝑁2 = 𝑏𝑥

Note： 𝑥 + 𝑦 = 𝑥 + 𝑦 𝑚𝑜𝑑 𝑁 and 𝑏𝑥 = 𝑏𝑥 𝑚𝑜𝑑 𝑁

Additive homomorphic: given 𝑥 and 𝑦 , we have

𝑥 ⋅ 𝑦 mod 𝑁2 = 𝑥 + 𝑦
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Use Paillier Cryptosystem to Achieve 

Secure Integer Operations [1, 2] 

𝑥 , 𝑦

Cloud Server (CP)
Computational 

Service Provider 

(CSP)

𝑠𝑘

Two non-colluding servers

[1] Samanthula B K, Elmehdwi Y, Jiang W. K-nearest neighbor classification over semantically secure 
encrypted relational data. IEEE transactions on Knowledge and data engineering, 2015, 27(5): 1261-1273.
[2] Bost R, Popa R A, Tu R, and Goldwasser S. Machine learning classification over enecypted data, 2015 
NDSS.
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Use Paillier Cryptosystem to Achieve 

Secure Multiplication [1]

Step-1@CP: randomly get 𝑟𝑥, 𝑟𝑦 ∈ 𝑍𝑁, compute 

𝑿 = 𝒙 ⋅ 𝒓𝒙 = 𝒙 + 𝒓𝒙
𝒀 = 𝒚 ⋅ 𝒓𝒚 = 𝒚 + 𝒓𝒚
send 𝑋 and 𝑌 to CSP  

Step-2@CSP:
use 𝑠𝑘 to decrypt  𝑋, 𝑌 to get 𝑿′, 𝒀′

𝑐ompute h= 𝑿′ ⋅ 𝒀′ = 𝒙 + 𝒓𝒙 𝒚 + 𝒓𝒚
send [ℎ] to CP

[1] Samanthula B K, Elmehdwi Y, Jiang W. K-nearest neighbor classification over semantically secure 
encrypted relational data. IEEE transactions on Knowledge and data engineering, 2015, 27(5): 1261-1273.

Given 𝒙 𝐚𝐧𝐝 𝒚 , 𝐨𝐮𝐭𝐩𝐮𝐭 𝒙𝒚
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Use Paillier Cryptosystem to Design 

Secure Multiplication [1]

Step-3@CP: compute

𝑺𝟏 = 𝒓𝒙 ⋅ 𝒓𝒚
𝑵−𝟏

= −𝒓𝒙 ⋅ 𝒓𝒚

𝑺𝟐 = 𝒙 𝑵−𝒓𝒚 = [−𝒓𝒚 ⋅ 𝐱]

𝑺𝟑 = 𝒚 𝑵−𝒓𝒙 = −𝒓𝒙 ⋅ 𝒚

𝒉 ⋅ 𝑺𝟏 ⋅ 𝑺𝟐 ⋅ 𝑺𝟑 = 𝒉 − 𝒓𝒙𝒚 − 𝒓𝒚𝒙 − 𝒓𝒙𝒓𝒚 = 𝒙 ⋅ 𝒚
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• Limitations of [1]

– Private key is directly stored in CPS

– Only support integer addition, multiplication, comparison, 

squared Euclidean distance etc

• Limitations of [2]

– Private key is directly stored in CPS

– Only support integer addition, comparison, argmax (the index of 

the largest value) and dot product

26

Limitations of  Existing Solutions

[1] Samanthula B K, Elmehdwi Y, Jiang W. K-nearest neighbor classification over semantically secure 
encrypted relational data. IEEE transactions on Knowledge and data engineering, 2015, 27(5): 1261-1273.
[2] Bost R, Popa R A, Tu R, and Goldwasser S. Machine learning classification over enecypted data, 2015 
NDSS.
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Our Approach

[3] Liu X, Choo R, Deng R, et al. Efficient and privacy-preserving outsourced calculation of rational 
numbers. IEEE Transactions on Dependable and Secure Computing (IEEE TDSC), 2016, accepted.

Use (n, k) threshold Paillier cryptosystem in which private
key is split into n shares, such that any k shares can
successfully decrypt

Cloud Server (CP) n Computation 

Service Providers 

(CSPs)

Data User

Encrypted 

Data 

Encrypted 

Result
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Privacy-preserving 

Integer Calculation Toolkit

[3] Liu X, Choo R, Deng R, et al. Efficient and privacy-preserving outsourced calculation of rational 
numbers. IEEE Transactions on Dependable and Secure Computing (IEEE TDSC), 2016, accepted.

Secure Multiplication (SM): Given [x] and [y], output [xy]

Secure Less Than (SLT): Given [x] and [y], output [u], where u = 0
when 𝑥 ≥ 𝑦 and u = 1 when 𝑥 < 𝑦

Secure Maximum and Minimum Sorting (SMMS): Given [x] and
[y], output ([A], [B]), where 𝐴 ≥ 𝐵
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Privacy-preserving 

Integer Calculation Toolkit

[3] Liu X, Choo R, Deng R, et al. Efficient and privacy-preserving outsourced calculation of rational 
numbers. IEEE Transactions on Dependable and Secure Computing (IEEE TDSC), 2016, accepted.

Secure Division (SDIV): Given [x] and [y], output [q] and [r], where
𝑦 = 𝑞 ⋅ 𝑥 + 𝑟

Secure Greatest Common Divisor (SGCD): Given [x] and [y], output
[c], where c= 𝐺𝐶𝐷 𝑥, 𝑦

Secure Equality Testing (SEQ): Given [x] and [y], output [f], where
𝑓 = 0 𝑖𝑓 𝑥 = 𝑦, otherwise 𝑥 ≠ 𝑦
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Privacy-preserving 

Integer Calculation Toolkit

[3] Liu X, Choo R, Deng R, et al. Efficient and privacy-preserving outsourced calculation of rational 
numbers. IEEE Transactions on Dependable and Secure Computing (IEEE TDSC), 2016, accepted.

Protocol CP Comp CSP Comp Commu

SM 82.7 ms 51.7 ms 1.25 KB

SLT 37.6 ms 29.9 ms 0.75 KB

SEQ 266.7 ms 165.6 ms 3.99 𝐾𝐵

SMMS 80.8 ms 45.8 ms 2.74 𝐾𝐵

SDIV (10 bits) 6.21 s 4.72 s 127.59 KB

SGCD (10 bits) 156.0 s 116.1 s 1.58 KB

Performance of secure calculations of integer numbers
PC with 3.6 GHz 6-core processor, 12G RAM, |N|=1024



SMU Classification: Restricted

31

Privacy-preserving 

Rational Numbers Calculations

[3] Liu X, Choo R, Deng R, et al. Efficient and privacy-preserving outsourced calculation of rational 
numbers. IEEE Transactions on Dependable and Secure Computing (IEEE TDSC), 2016, accepted.

Encryption of 

Rational Number

A rational number x can be expressed as
𝑥+

𝑥−
, and

encrypted as 𝑥+ , 𝑥−

For example, -0.25 can be expressed as
𝑥+

𝑥−
= −

1

4
, and

encrypted as 1 𝑁−1, 4
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Privacy-preserving 

Rational Numbers Calculations

[3] Liu X, Choo R, Deng R, et al. Efficient and privacy-preserving outsourced calculation of rational 
numbers. IEEE Transactions on Dependable and Secure Computing (IEEE TDSC), 2016, accepted.

Secure Rational 

Number Processing

Similar to that of the plaintext rational numbers

For example,
1

4
⋅
3

4
=

1⋅3

4⋅4
and given ([1],[4]) and ([3],[4]),

we have

(𝑆𝑀 1 , 3 , 𝑆𝑀 4 , 4 )
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Privacy-preserving 

Rational Numbers Calculation Toolkit

[3] Liu X, Choo R, Deng R, et al. Efficient and privacy-preserving outsourced calculation of rational 
numbers. IEEE Transactions on Dependable and Secure Computing (IEEE TDSC), 2016, accepted.

Performance

Protocol CP Comp CSP Comp Commu

ADD(R) 280.7 ms 155.6 ms 3.74 KB

MIN(R) 283.7 ms 154.0 ms 3.74 KB

MUL(R) 190.3 ms 105.7 ms 2.49 𝐾𝐵

DIV(R) 195.3 ms 108.1 ms 2.49𝐾𝐵

CMP(R) 216.6 ms 125.5 ms 3.24KB

EQ(R) 495.1 ms 273.8 ms 6.49KB
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Privacy-Preserving Outsourced Calculations 

Across Domains

[4] Liu X, Deng R H, Choo K K R, et al. An Efficient Privacy-Preserving Outsourced Calculation Toolkit 
With Multiple Keys. IEEE Transactions on Information Forensics and Security, 2016, 11(11): 2401-2414. 

Data Providers (DPs)

Request Users 
(RUs) Key Generation 

Center (KGC)

Computation 
Service Provider 

(CSP)

Cloud Platform 
(CP)

⋯ 

Data Providers, each has a public/private key pair
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Two Trapdoor Paillier Cryptosystem

[5] Liu X, Deng R H, Choo K K R, et al. An Efficient Privacy-Preserving Outsourced Calculation Toolkit 
With Multiple Keys. IEEE Transactions on Information Forensics and Security, 2016, 11(11): 2401-2414. 

User 1 User 2

User 1 

Private 

Key 

User 2 

Private 

Key 

Encrypted  

Under 

User 1 

Public Key

Encrypted 

Under 

User 2

Public Key

Cloud 

Server(CP)

Computation 

Service 

Provider(CSP)

Plaintext
Strong 

Private 

key
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Applications
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How to securely process complex (non-

liner) curves??
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Piecewise vs Maclaurin/Taylor Series 

Approximations

[6] Liu X, Deng R H, Yang Y, et al. Hybrid Privacy-Preserving Clinical Decision Support
System in Fog-Cloud Computing, Future Generation Computer Systems, 2017.
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Privacy-Preserving Piecewise Function 

Calculation

[6] Liu X, Deng R H, Yang Y, et al. Hybrid Privacy-Preserving Clinical Decision Support
System in Fog-Cloud Computing, Future Generation Computer Systems, 2017.

Piecewise approximation

Secure computation of piecewise approximation

[f(x)] = [u1][f1(x)]+[u2][f2(x)] +… + [uz][fz(x)]
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Summary 
- Scalable Access Control of Encrypted Data 

• ABE is an one-to-many public key encryption and allows 
scalable access control of encrypted data in the cloud

• Verifiable outsourced decryption of ABE

• Efficient user and attribute revocation 

• CP-ABE with partial hidden access police

• Deduplication on encrypted data 

• Attribute-based secure messaging system in the cloud

• Usability study

• Integrated design and implementations

40
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Summary
- Secure outsourced computations

• Combining semi-homomorphic encryption and system 

approaches to realize secure computation over 

encrypted data

• Secure integer computations, secure rational number 

computations, secure floating point number 

computations 

• Secure computation across multiple domains

• Applications such as secure processing of complex 

curves

• Limitations

‒ Efficiency, multiple servers, overflow/underflow problems which 

are common to all homomorphic encryption schemes
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Thank You!

For more information please contact 

robertdeng@smu.edu.sg


