
1

Joint Scheduling of Overlapping Phases 
in the MapReduce Framework

Jie Wu

Collaborators: Huanyang Zheng and Yang Chen
Center for Networked Computing

Temple University



2

Road Map

1. Introduction

2. Model and Formulation

3. General Greedy Solutions

4. Experiment

5. Conclusion



3

1. Introduction

Map-Shuffle-Reduce: a popular computation paradigm
Map and Reduce: CPU-intensive
Shuffle: I/O-intensive

Master node: pipeline scheduling
Data node: data parallelism

E.g., TeraSort
Map: sample & partition data
Shuffle: move data
Reduce: locally sort data

Shuffle

Data 
partition

Map Reduce

Local 
sort

Data 
partition

Local 
sort



4

Scheduling of Multiple Jobs

Multiple jobs
Terasort, wordcount, …

Reduce is not significant (Zaharia, OSDI 2008)
7% of jobs are reduce-heavy

Centralized scheduler
Determines a sequential order for jobs 
on the map and shuffle pipeline



5

Job Classification

Dependency relationship
Map emits data at a certain rate
Shuffle waits for the map data 

Job classification
Map-heavy: map ≥ shuffle (m ≥ s)
Shuffle-heavy: map ≤ shuffle (m ≤ s)



6

Time

Time

0%

100%

0%

100%
J2

J2J1

J1

Map CPU

Shuffle I/O

2 310

Time

Time

0%

100%

0%

100%
J2

J2 J1

J1

Map CPU

Shuffle I/O

2 3 40

Execution Order

Impact of overlapping map and shuffle

Map 
pipeline

Shuffle 
pipeline

WordCount (map-heavy) TeraSort (shuffle-heavy)



7

2. Model and Formulation

Schedule objective:
Minimize the average job completion time for all jobs; 
Ji includes the wait time before the job starts. 

Schedule is NP-hard offline and APX-hard online (Lin 2013)

Offline 
All jobs arrive at the beginning (and wait for 

schedule)



8

Related Work: Flow Shop
Minimize last job completion time 

l-phase flow shop is solvable when l=2
○Gs: shuffle-heavy jobs sorted in decreasing order of shuffle load
○Gm: map-heavy jobs sorted in increasing order of map load 

Optimal schedule:  Gs followed by Gm

S. M. Johnson, Optimal two-and three-stage production schedules with setup times 
included, Naval Research Logistics Quarterly, 1954.

Map 

Shuffle 
J2
J2

J1
J1

J3
J3

J4
J4

J2
J2

J1
J1

J3
J3

J4
J4



9

Related Work: Strong Pair
Minimize average job completion time 

Strong pair
○J1 and J2 are a strong pair if m1 = s2 and s1 = m2

Optimal schedule:  jobs are strong pairs
Pair jobs and rank pairs by total workloads

H. Zheng, Z. Wan, and J. Wu, Optimizing MapReduce framework through joint 
scheduling of overlapping phases, Proc. of IEEE ICCCN, 2016.

Map 

Shuffle 
J1
J1

J3
J3 J4

J4
J2

J2J1
J1

J3
J3J4

J4
J2

J2



10

First Special Case
When all jobs are map-heavy, balanced, or shuffle-heavy

Optimal schedule O(n log n):
Sort jobs ascendingly by dominant workload max{m, s}

Execute small jobs first

Map 
pipeline

Shuffle 
pipeline

Time

Time

J1

J1

J2

J2

J3

J3
Time

Time

J1

J1

J2

J2

J3

J3

Finishing times J1, J2, J3: 1, 3, 6  vs.  J3, J2, J1: 3, 5, 6 



11

Second Special Case

Jobs J1 and J2 can be “paired”
if m1 ≤ m2, s1 ≥ s2 (non-dominance), and m1+m2=s1+s2 (balance)

Optimal schedule O(n log n):
Pair jobs: head to tail pairing on sorted jobs based on m-s      
Sort job pairs: by total workload m+s
Execute sorted job pairs: smallest pair first

Map

Shuffle Time

Time

0%

100%

0%

100%
J2

J2J1

J1

2 3 40 1



12

Why Non-dominance?
Cannot pair small and large jobs J1 and J2

Time

Time

J1

J1

J2

J2

Map

Shuffle

0 1 2 3 4 5 6 7 8 9 10

Time

Time

J1

J1

J2

J2

Map

Shuffle

0 1 2 3 4 5 6 7 8 9 10

Completion times: 2, 5, and 10

Completion times: 3, 5, and 10



13

If jobs can be paired, paired job scheduling is optimal if
(1) job pairs with smaller workloads are executed earlier and
(2) all pairs are executed together (with shuffle-heavy first).

In each pair, shuffle-heavy job is executed before map-heavy job
Otherwise a swap leads to a better result

Job pairs with smaller total workloads are executed earlier
Otherwise a swap leads to a better result

Paired jobs should not be separately executed 
A bit more involved

Theorem



14

S1 is better than S3 and S4 when J* is large
S2 is better than S3 and S4 when J* is small

Proof



15

3. General Greedy Solutions

A delicate balance for general cases

Map-dominant (shuffle-dominant)

more map (shuffle)-heavy than shuffle (map)-heavy

Pairing
factor

Small job
factor



16

Sort jobs based on their sizes (“workload”)

Partition sorted list in k (group factor) groups

Execute each group in order based on workload
Order matters for inter-group!

Pair jobs in each group 
Pairing matters for intra-group!

…...

Group

1 2 k -1

Working order

First Greedy Algorithm



17

Group jobs by their workloads (first factor)
Optimally divide jobs into k groups

minimize the sum of maximum job
workload difference in each group

Execute the group of smaller jobs earlier

Pair jobs in each group (second factor)
Jobs in each group have similar workloads
Pair shuffle-heaviest and map-heaviest jobs

Time complexity is O(n2k)

Group-Based Scheduling Policy (GBSP)



18

Example 1: GBSP

J1

J1

J4

J4J2

J2 J3

J3

map
shuffle

group jobs by workloads
J1

J1

J4

J4 J2

J2J3

J3

pair jobs in each group
J1

J1

J4

J4 J2

J2 J3

J3

schedule
J1

J1

J4

J4 J2

J2 J3

J3



19

Workload Definition
Dominant workload scheduling policy (DWSP)

Groups jobs by dominant workloads, max {m, s}
Performs well when jobs are simultaneously map-heavy, balanced, 
or shuffle-heavy

Total workload scheduling policy (TWSP)
Groups jobs by total workloads, m+s

Performs well when jobs can be perfectly paired

Weighted workload scheduling policy (WWSP)
A tradeoff between DWSP and TWSP

Groups jobs by weighted workloads , α*max{m,s} + (1-α)*(m+s) 



20

Second Greedy Algorithm 
Sort jobs by map-shuffle workload difference

Cut jobs into two parts
Use minimum weight maximum matching to pair jobs in the first  part

Exhaust all possible cuts and pick the best cut
Sort jobs by their workloads after pairing, together with single jobs

Paired jobs are regarded as one job

Sort jobs by m-s (  or  )

Paired jobs Single jobs
Cut

Map-dominant

Paired jobs Single jobs
Cut

Shuffle-dominant

Sort jobs by s-m (  or  )



21

Pair jobs through minimum weight maximum matching
Matching weight for J1 and J2:

(1-β) * non-dominance factor +β * balance factor 

Non-dominance factor:
Balance factor:

Match-Based Scheduling Policy (MBSP)

J5
J5

J4
J4J2

J2

J3
J3

J1
J1

J6
J6

J7
J7



22

Theorem
MBSP has an approximation ratio of 2 if

(1) some jobs can be perfectly paired,
(2) all remaining jobs are map-heavy or shuffle-heavy,
(3) dominant workload is used to sort jobs.

Time complexity is O(n3.5)
Exhausting all cuts takes O(n) iterations
Matching in each iteration takes O(n2.5) 

(Blossom algorithm, 1961)



23

4. Experiment

Google Cluster Simulation
About 11,000 machines
96,182 jobs over 29 days in May 2011

Number of job submissions per hour (arrival rate)



24

Google Cluster Dataset

Distribution of map and shuffle time

Slightly more map-heavy jobs



25

Comparison Algorithms

Pairwise: has only one group then iteratively pairs the
map-heaviest and shuffle-heaviest jobs in the group

MaxTotal: ranks jobs by total workload m+s and executes 
jobs with smaller total workloads earlier

MaxSRPT: ranks jobs by dominant workload max{m,s} and 
executes jobs with smaller dominant workloads earlier



26

Waiting, Execution, and Completion
Group k = 20, α = 0.5, β = 0.5, Col 1st regular, 2nd shuffle half, 3rd map half

GBSP

The average job completion time ratio between MBSP
and WWSP is 92.3%, 95.8% and 85.1%, respectively.

Scheduling algorithms Average job
waiting time

Average job
execution time

Average job
completion time

Pairwise 8289 7652 3609 149 23 28 8438 7675 3637

MaxTotal 5054 4586 2525 362 32 156 5416 4618 2681

MaxSRPT 4768 4546 2591 840 32 150 5608 4578 2741

DWSP 4809 4519 2545 581 53 85 5390 4572 2630

TWSP 4787 4501 2522 563 49 104 5350 4550 2626

WWSP 4619 4482 2479 532 45 79 5151 4527 2558

MBSP 4562 4314 2142 193 26 36 4754 4340 2178



27

Impact of k and α in WWSP

Group-based scheduling policy with k groups
Sorts jobs by α*max(m,s) + (1-α)*(m+s)

Small/large group k
Small/large weight α

Minimized 
when α = 0.57



28

Impact of β in MBSP

Match-based scheduling policy matches J1 and J2 by
β * balance factor + (1-β) * non-dominance factor

Small/large weight β
Minimized 

when β = 0.68



29

Hadoop Testbed on Amazon EC2

Testbed
Ubuntu Server 14.04 LTS (HVM)
Single core CPU and 8G SSD memory

Jobs: WordCount jobs and TeraSort jobs
6 WordCount use books of different sizes

2MB, 4MB, 6MB, 8MB, 10MB, 12MB

6 TeraSort use instances of different sizes
1KB, 10KB, 100KB, 1MB, 10MB, 100MB



30

Completion Time

Hadoop: one master node + several data nodes
Number of data nodes: 1, 2, 4, 8, 16

MBSP and WWSP have the best results



31

5. Conclusion

Map and Shuffle phases can overlap
CPU and I/O resource

Objective: minimize average job completion time

Group-based and match-based schedules
Optimality under certain scenarios
Pairing factor
Small jobs factor



32

Shuffle

Map

Reduce

Time

Time

0%

100%

0%

100%
J2

J2J1

J1

Time0%

100%
J2J1

2 310

Future Work
3-phase example

More simulations
Imbalanced map and shuffle
impact of k, α, and β

Multiple phases
Beyond 2-phase

Other computation paradigms
Map-collective



33

Future Work
Online scheduling

Batched
Batch size   

Duration-based batching
Low-job rate: time out

High-job rate: probabilistic   
∆: efficient, but slow; 1-∆: inefficient, but fast

Counting-based batching
Low-job rate: time out

High-job rate: credit
Scheduling time vs. execution time


